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Abstract
We study the response of one-dimensional subdiffusive fractional Fokker–
Planck systems with a general confining potential, when it is perturbed from its
stationary state by a time-dependent non-sinusoidal driving force. Three types
of rectangular driving signals have been investigated: a rectangular pulse, a
periodic telegraph signal and a generalized telegraph signal with a fractional
duty cycle. We derive analytic expressions for the linear response and the input
energy in one period of the driving signal. In particular, for signals with a long
period, we obtain several asymptotic results concerning the wave form of the
response and the stochastic energetics. Numerical results for representative
symmetric, as well as asymmetric, subdiffusive bistable systems are presented
and discussed.

PACS numbers: 05.10.Gg, 45.10.Hj

1. Introduction

Dynamical processes of complex systems often exhibit intriguing features including,
for example, anomalous diffusive behaviour, non-exponential relaxation, non-Gaussian
probability density functions and long-range spatial or temporal correlations obeying peculiar
power laws; hence, they have received much attention in recent years. In order to describe the
anomalous dynamical processes which occur in a variety of physical and biological systems,
fractional calculus has been found to be a useful tool, and various fractional dynamical
equations have been proposed [1–3]. In this work, we shall focus on the dynamics described
by the non-Markovian subdiffusive fractional Fokker–Planck equation (SFFPE) [2].

A diversity of phenomena displays subdiffusive dynamical behaviour. For example,
it is observed in the charge carrier transport in amorphous semiconductors, the spread of
contaminants in underground water, nuclear magnetic resonance diffusometry in percolative
systems and porous systems, motions of polymeric systems, as well as protein conformational
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dynamics [2]. The SFFPE, with its characteristic slowly decaying kernel which generates
strong memory effects, provides a theoretical framework to describe subdiffusion. Being
an extension of the classical Fokker–Planck equation, the SFFPE can be derived by several
approaches [4–7], and it can also be regarded as the overdamped case of the fractional
Klein–Kramers equation [2, 3, 7, 8]. Recently, this equation has been applied to a number
of problems which reveal the significance of subdiffusive dynamics, including dynamics
of annealed systems [9], linear response in complex systems [10], diffusion on comb-like
structure [11], subdiffusive motion of bistable systems [12], anomalous transport in tilted
periodic potentials [13], subdiffusive reaction–diffusion processes [14–20] and fluorescence
lifetime for small single molecules [21, 22].

In this work we shall study the behaviour of a one-dimensional subdiffusive fractional
Fokker–Planck system, with a confining potential and initially in its stationary state, when it
is perturbed by a time-dependent driving force. We consider three types of non-sinusoidal
driving forces: a rectangular pulse, a periodic telegraph signal and a generalized telegraph
signal with a fractional duty cycle. In [23–27], the effects of rectangular driving signals
on a diffusive noisy bistable system have been investigated by analogue simulations and by
solving the Langevin equation numerically. In our work, the focus is on the consequences of
the subdiffusive dynamics, and we shall limit our discussion to linear response theory only.
Besides the response to the driving signals, we also examine the stochastic energetics of the
system [28]. For the case of a Brownian bistable system perturbed by a sinusoidal time-varying
force, the work done by the external agent on the system displays resonance-type dependence
on the noise intensity as well as the frequency of the driving force [29–31]. It is of interest
to perform a comparative study of the subdiffusive counterpart in the presence of perturbing
rectangular pulses. For a general confining potential, we shall derive analytic expressions
for the linear response of the system and the externally injected energy in one period of the
driving signal. When the driving force has a long period, these formulae allow us to deduce
several asymptotic results concerning the secular behaviour of the system. Numerical results
for representative double-well confining potentials will be presented to confirm the validity
of the theoretical analyses and to illustrate the effects of the noise intensity and the relative
duration of the pulses.

This paper is organized as follows. In section 2, the linear response theory for a subdif-
fusive fractional Fokker–Planck system with a confining potential is presented. In section 3,
we consider the linear response to a rectangular signal of a finite duration. In section 4, we
study the linear response to a periodic telegraph signal. In particular, for a signal with a
long period, we show that the theoretical result is in accord with the adiabatic approximation,
and we obtain an asymptotic expression of the secular linear response. Numerical results for
representative subdiffusive bistable systems are presented and discussed. In section 5, the
linear response to a telegraph signal with a fractional duty cycle is analysed. We show that
the dependence of the secular stochastic energy on the duty cycle satisfies a complementarity
relation. Section 6 contains our concluding remarks.

2. Basic equations and the linear response theory

We begin with the one-dimensional SFFPE of the probability density function (PDF), P(x, t),
for the position x at time t, of a particle moving in a static confining potential U(x) with
−∞ < x < ∞ [4]:

∂

∂t
P (x, t) = 0D̂

1−γ
t

[
L̂0

FP(x)P (x, t)
]
, (1)
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where the fractional Riemann–Liouville operator is defined by

0D̂
1−γ
t [f (x, t)] = 1

�(γ )

∂

∂t

[ ∫ t

0
(t − t ′)γ−1f (x, t ′) dt ′

]
, (2)

with 0 < γ < 1 and � denotes the gamma function. The Fokker–Planck operator L̂0
FP contains

a positive diffusion constant D and the gradient of the potential U ′(x) = [dU(x)/dx] [32]:

L̂0
FP(x) = D

∂2

∂x2
+

∂

∂x
U ′(x). (3)

For a confining potential, U = ∞ and P = 0 at x = ±∞. We assume that all quantities in
equation (1) are expressed in appropriate dimensionless units [3]. The stationary solution of
equation (1) is given by the distribution [4, 32]

P0(x) = N exp[−U(x)/D], (4)

where N is a normalization constant. The eigenfunctions {ϕn(x)}, with eigenvalues {−λn}, of
the Fokker–Planck operator constitute a convenient set of basis functions for the SFFP system

L̂0
FP(x)ϕn(x) = −λnϕn(x), n = 0, 1, 2, . . . , (5)

with λ0 = 0 and λ0 < λ1 < λ2 < · · · . Through the transformation ψn(x) =
ϕn(x) exp[U(x)/2D], we arrive at a pseudo-Schrö dinger equation, with a D-dependent
potential, for ψn [32]:

Ĥψn(x) = (λn/2D)ψn(x), (6)

where Ĥ = 1
2 p̂2

x + VD(x), p̂x = −i(d/dx) and VD(x) = [U ′(x)]2/(8D2) − U ′′(x)/(4D).
With ψn taken to be real and normalized, we have the orthonormality relation∫ ∞

−∞
ψm(x)ψn(x) dx =

∫ ∞

−∞
ϕm(x)ϕn(x) exp[U(x)/D] dx = δmn. (7)

In particular, we note that the ‘ground-state wavefunction’ is given by ψ0(x) = √
P0(x), and∫ ∞

−∞ ϕn(x) dx = δn0/
√

N .
We introduce several matrix elements and sums which are essential to our analysis of the

dynamical response problem. We define Xmn = ∫ ∞
−∞ ψm(x)xψn(x) dx ≡ 〈ψm|x|ψn〉,Mn0 =

〈ψn|[−U ′(x)/D]|ψ0〉 and Cj = −∑∞
n=1 X0nMn0λ

−j
n with j = 1, 2. Because of the relation

−U ′(x)ψ0(x) = 2Dψ ′
0(x) and the commutation relation [x, Ĥ ] = ip̂x , we can transform Mn0

as

Mn0 = 2〈ψn|[x, Ĥ ]|ψ0〉 = −(λn/D)Xn0. (8)

Thus, M00 = 0. Furthermore, using the closure relation
∑∞

n=0 |ψn〉〈ψn| = 1 and integration
by parts, we obtain the following sum rules:

∞∑
n=1

X0nMn0 =
∫ ∞

−∞
x

d

dx

[
ψ2

0 (x)
]

dx = −1, (9)

∞∑
n=1

X0nMn0λn = −〈ψ0|[U ′(x)]2|ψ0〉/D, (10)

and

C1 = [〈ψ0|x2|ψ0〉 − 〈ψ0|x|ψ0〉2]/D. (11)
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Therefore, C1 is a positive quantity: it is determined by the variance of x in the ground state
ψ0 of Ĥ . We note that, by equation (8), C2 is also found to be positive:

C2 =
∞∑

n=1

X2
0nλ

−1
n D−1. (12)

For the SFFP system, the transition probability density can be written as an eigenfunction
expansion [4, 14, 32]

P(x, t |x ′, t ′) =
∞∑

n=0

ψ0(x)

ψ0(x ′)
ψn(x)ψn(x

′)Eγ [−λn(t − t ′)γ ], (13)

where t > t ′ and Eγ (z) = ∑∞
j=0 zj /�(1 + γj) is the Mittag–Leffler function. The above

formula can be used to calculate the stationary auto-correlation function Cxx(t) [12] which,
for t > 0, is defined as

Cxx(t) =
∫ ∞

−∞
xP (x, t |x ′, 0)x ′P0(x

′) dx dx ′ −
[ ∫ ∞

−∞
xP0(x) dx

]2

=
∞∑

n=1

X2
0nEγ (−λnt

γ ). (14)

The frequency transform of Cxx yields the spectral density Sxx(ω) [33]:

Sxx(ω) ≡ 2
∫ ∞

0
Cxx(t) cos ωt dt =

[
2 sin

(
1
2γπ

)
ω1−γ

] ∞∑
n=1

X2
0nλn

Y 2
n (ω, γ )

, (15)

where a characteristic function for the spectral property of the SFFP system has been
introduced:

Yn(ω, γ ) = [
ω2γ + 2ωγ λn cos

(
1
2γπ

)
+ λ2

n

] 1
2 . (16)

We now turn to the problem of dynamical linear response. Suppose that the particle is initially
in the stationary state described by the PDF P0(x) shown in equation (4). For t > 0, let a
spatially homogeneous but time-dependent force be applied to the particle so that its potential
energy becomes U(x, t) = U(x) + H(t)x, where −H(t) represents a weak time-dependent
driving force. We write the PDF at t > 0 as P(x, t) = P0(x) + P1(x, t) and calculate P1 to
the first order of H(t). P1 obeys the equation of motion

∂

∂t
P1(x, t) = 0D̂

1−γ
t

[
L̂0

FP(x)P1(x, t) + P ′
0(x)H(t)

]
, (17)

with the initial condition P1(x, 0) = 0. It is helpful to consider the Laplace transform of
equation (17) with respect to t:

sγ P̃1(x, s) = L̂0
FP(x)P̃1(x, s) + P ′

0(x)H̃ (s). (18)

To solve equation (18), we write P̃1 as P̃1(x, s) = ∑∞
n=1 c̃n(s)ϕn(x); the exclusion of ϕ0(x)

ensures that
∫ ∞
−∞ P1(x, t) dx = 0. The orthonormality relation shown in equation (7) allows us

to determine the expansion coefficients. Finally, we obtain P1 in the form of an eigenfunction-
expansion

P1(x, t) =
∞∑

n=1

√
NMn0an(t; γ )ϕn(x). (19)

The time-dependent coefficient an, given by the inverse Laplace transform

an(t; γ ) = L−1[(sγ + λn)
−1H̃ (s)] ≡ L−1[F̃n(s; γ )H̃ (s)], (20)
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is expressible as a convolution integral

an(t; γ ) =
∫ t

0
Fn(t − t ′; γ )H(t ′) dt ′, (21)

where the function Fn(t; γ ) can be related to the derivative of a Mittag–Leffler function

Fn(t; γ ) = L−1[(sγ + λn)
−1] = −λ−1

n [dEγ (−λnt
γ )/dt]. (22)

The average value of x at t > 0 is given by 〈x(t)〉 = X00 + 
x1(t) with the linear response
determined by


x1(t) =
∫ ∞

−∞
xP1(x, t) dx =

∞∑
n=1

X0nMn0an(t; γ ). (23)

Equations (19)–(23) are the basic results of our linear response theory for a confined SFFP
system. We next proceed to investigate the linear response to three types of rectangular signals:
(1) a rectangular pulse, (2) a periodic telegraph signal and (3) a generalized telegraph signal
with a fractional duty cycle. For these cases, the integral in equation (21) can be calculated,
and we obtain analytic expressions of 
x1(t).

3. Response to a rectangular pulse

Consider the perturbation due to a rectangular pulse switched on at time T0 and off at time T1:
H(t) = −A�(T1 − t)�(t − T0), where A is a constant and � is Heaviside’s step function.

By equations (21)–(23), the linear response for T0 < t < T1 is found to be


x1(t) = −A

∞∑
n=1

X0nMn0λ
−1
n [1 − en(γ, t − T0)], (24)

where we have introduced the notation en(γ, t) ≡ Eγ (−λnt
γ ). It is of interest to examine

the response immediately after the pulse is turned on (i.e., t → T +
0 ). Using the series

representation of Eγ in conjunction with the sum rules shown in equations (9) and (10), we
find that the early-time response has the following asymptotic behaviour:


x1(t) = A

[
(t − T0)

γ

�(1 + γ )
− 〈ψ0|[U ′(x)]2]|ψ0〉

D�(1 + 2γ )
(t − T0)

2γ + O(t − T0)
3γ

]
≡ 
xa(t − T0). (25)

It is noteworthy that the first term in 
xa in fact does not depend on the potential U(x) and
is solely characterized by the subdiffusiveness parameter γ . We obtain a divergent derivative
[d
x1(t)/dt] � A/[�(γ )(t − T0)

1−γ ] when t → T +
0 .

For t > T1, the linear response is given by


x1(t) = −A

∞∑
n=1

X0nMn0λ
−1
n [en(γ, t − T1) − en(γ, t − T0)], (26)

which depends on the time differences (t − T0) and (t − T1). Such temporal dependence
has been found in previous works on subdiffusive systems without a confining potential
[9, 10]. It is shown in these works that the linear response of systems modelled by continuous-
time random walks is different and exhibits aging. Immediately after the cessation of the
perturbation (i.e., t → T +

1 ), we find that


x1(t) � −A

∞∑
n=1

X0nMn0λ
−1
n [1 − en(γ, T1 − T0)] − 
xa(t − T1), (27)
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0 10 20 30
t

0

1

2

3

∆x
1(

t)
/A

γ=0.25
γ=0.5
γ=0.75
γ=1

Figure 1. The time dependence of the response [
x1(t)/A] to a rectangular pulse with T0 = 0
and T1 = 10 for the potential U4 at D = 0.3 with different values of γ .

where 
xa has been defined in equation (25). Comparing the responses given by equations (25)
and (27), we see that the latter has an increment given by the first term in equation (27), which
is positive if A > 0. The second term in equation (27) is related to the early-time response
close to T0 by a sign reversal and a temporal translation from T0 to T1. When t → T +

1 , we
again have a divergent derivative [d
x1(t)/dt] � −A/[�(γ )(t − T1)

1−γ ].
In the long-time limit, the linear response is proportional to the total impulse A×(T1 −T0)

delivered by the pulse and decays algebraically with increasing time


x1(t) � [γC2/�(1 − γ )][A × (T1 − T0)/t1+γ ], t → ∞. (28)

This result is obtained by applying the asymptotic formula Eγ (−z) � [�(1 −γ )z]−1 for large
z to equation (26).

Thus we encounter the characteristic constant C2 in the long-time tail of the linear
response. To illustrate the aforementioned features, we show in figure 1 the response of a
system with the symmetric double-well potential U4(x) = (−0.5x2 + 0.25x4) and D = 0.3,
for different degrees of subdiffusiveness. Our eigenfunctions and eigenvalues are obtained by
the state-dependent diagonalization method [34]. The series shown in equations (24) and (26)
are found to converge rapidly. The case with γ = 1 is the conventional Fokker–Planck system
whose response decays exponentially with increasing time for large t.

4. Response to a telegraph signal

We now study the effect of a telegraph signal, with a period 2T and an amplitude A (> 0),
defined by

H(t) = −A

∞∑
k=0

(−1)k�(t − kT )�(kT + T − t). (29)

We recall that the telegraph signal has been investigated in the problem of coherent stochastic
resonance of diffusive systems with two absorbing boundaries [35]; its effect on the mean
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survival time does not display a resonance-like dependence on the frequency, in marked
contrast with a sinusoidal periodic driving force [35, 36].

At time t = (KT + εT ), where K is a positive integer and 0 � ε < 1, equations (21)–(23)
yield


x1(t = KT + εT ) = A × (−1)K
∞∑

n=1

X0nMn0λ
−1
n

{
Sn(γ, εT ) + (−1)Ken(γ, (KT + εT ))

+
K−1∑
j=1

(−1)j 2en(γ, (jT + εT ))

}
, (30)

where Sn(γ, εT ) = [2en(γ, εT ) − 1]. We are interested in the secular response with K 	 1
for which equation (30) can be approximated by


x1s(t = KT + εT ) = A × (−1)K
∞∑

n=1

X0nMn0λ
−1
n

{
Sn(γ, εT )

+
∞∑

j=1

(−1)j 2en(γ, (jT + εT ))

}
. (31)

We have performed numerical calculations based on equation (30) for the symmetric double-
well potential U4(x) and the asymmetric double-well potential U3(x, a3) = (−0.5x2 + a3x

3 +
0.25x4). When a3 = 0.4, U3 is highly asymmetrical: it has a deeper well around x = −1.766,
a shallow well around x = 0.566, and the ratio of the two potential-well depths is 21:1.

In figure 2, we depict the results of the response for different parameters. We observe that
for 1 � D � 0.1 and T < 10, the wave form of the evolution of the secular response is rather
different from that of a telegraph signal and the dissimilarity increases as the subdiffusive
character of the system decreases. However, if the period of the driving signal is increased
at a fixed value of D, then for sufficiently large T the wave form of the response gradually
resembles the shape of a telegraph signal. This phenomenon has also been observed in recent
works which investigate the nonlinear response of the diffusive system with the potential U4

by solving the Langevin equation numerically [26, 27].
To understand this long-period effect, we introduce a characteristic time scale of the SFFP

system: T ∗(γ ) = λ
−1/γ

1 , which provides a useful gauge for the period of the driving signal.
T ∗ is sensitive to the symmetry of the confining potential and the values of D and γ . For
example, for U4 and D = 0.05, we have T ∗(1) = 360 and T ∗(0.5) = 1.30 × 105; however, if
D is increased to 0.1, T ∗ is markedly reduced: T ∗(1) = 29.8 and T ∗(0.5) = 889. In contrast,
for U3 with a3 = 0.4 and D = 0.1, we find T ∗(1) = 8.75 and T ∗(0.5) = 76.5.

For a telegraph signal with a very long period, the last sum in equation (31) becomes
negligible since it is of the order of T −γ , and the quantity Sn(γ, εT ) thus plays an
important role. Let us assume that the value of ε(0 < ε < 1) satisfies the condition
g ≡ [εT /T ∗(γ )]γ 	 1. Then en(γ, εT ) = O(λ1/λng) � 1, Sn(γ, εT ) � −1, and,
therefore, 
x1s(KT ) � −
x1s(KT + εT ) since Sn(γ, 0) = +1. If the condition g 	 1 is
met even when ε is quite small, then the secular response will resemble a telegraph signal.
For example, for the case of U4 with D = 0.5, γ = 1 and T = 100, we find, for ε = 0.1, that
S1 = −0.97 and Sn = −1.00 for n � 2. However, if γ is reduced to 0.5, then for the same
ε = 0.1 we need T = 1.5 × 104 to yield S1 = −0.931 and S2 = −0.987.

In order to gain further understanding of the long-time behaviour of 
x1(t), we calculate
the inverse Laplace transform shown in equation (20) by means of the Bromwich–Hankel
path in the complex s-plane [37, 38]. The Laplace transform of the telegraph signal is
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Figure 2. The response [
x1(t)/A] to a telegraph signal of period 2T for different values of γ .
Parts (a)–(c) are for U4 at D = 0.3 and T = 1, 10, 100, respectively. Parts (d) and (e) are for U3
with a3 = 0.4 at D = 0.5 and T = 10, 100, respectively.

H̃ (s) = −(A/s) tanh(T s/2). For 0 < γ < 1, the expansion coefficient an(t; γ ) is composed
of two parts. The first part is the contribution from integrals along the two borders of the cut
negative real axis of the complex s-plane:

[an(t; γ )]cut =
∫ ∞

0
H̃ (−s)Kn(s, γ ) exp(−st) ds, (32)

with the kernel given by

Kn(s, γ ) = sγ sin γπ

π
(
s2γ + 2sγ λn cos γπ + λ2

n

) . (33)
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The second part comes from the residues of the poles of F̃n(s; γ )H̃ (s) exp(st):

[an(t; γ )]res = −4A

π

∞∑
j=0

sin[j t − δn(j , γ )]

(2j + 1)Yn(j , γ )
, (34)

where j = (2j + 1)π/T , Yn has been defined in equation (16) and

δn(j , γ ) = arctan

[


γ

j sin 1
2γπ

λn + 
γ

j cos 1
2γπ

]
. (35)

For 0 < γ < 1, the simple poles of F̃n are not situated in the main Riemann sheet and,
therefore, do not contribute to the sum of residues [37].

Accordingly, 
x1(t) = [
x1(t)]cut + [
x1(t)]osc, where the second term, associated with
the coefficients given in equation (34), can be written as a Fourier series

[
x1(t)]osc =
∞∑

j=0

[χ(j ) exp(ij t) + c.c], (36)

with the complex Fourier coefficients given by

χ(j ) = 2iA

π(2j + 1)

∞∑
n=1

XonMno

Yn(j , γ )
exp[−iδn(j , γ )]. (37)

When t → ∞, [
x1(t)]cut � (AC2T/2π)(sin γπ)�(1 + γ )t−(1+γ ) and eventually becomes
negligible. For the case of γ = 1, equation (36) remains valid, but [
x1(t)]cut is absent and,
instead, we have another term

∑∞
n=1 X0nMn0H̃ (−λn) exp(−λnt) which decays exponentially

for large t.
Now, consider a telegraph signal with a long period. We can estimate the asymptotic

behaviour of equation (36) in the limit [πT ∗(γ )/T ]γ → 0 by using the small-j

approximation for equation (37): χ(j ) � [2iA/π(2j + 1)]
∑∞

n=1 XonMnoλ
−1
n , which yields

[
x1(t)]osc � (4AC1/π)
∑∞

j=0(sin j t)/(2j + 1). Noting that the telgraph signal has the
Fourier series representation H(t) = −(4A/π)

∑∞
j=0(sin j t)/(2j + 1), we arrive at the

asymptotic relation [
x1(t)]osc � −C1H(t) when [T/πT ∗(γ )]γ → ∞. Thus, the wave
pattern of the secular response and the driving force −H(t) are nearly the same. Recalling the
numerical dependence of T ∗ on γ and D, we conclude that for the normal diffusive system
with γ = 1 the long-period condition is easier to fulfil. It is interesting to note that the
constant C1, which is closely related to the uncertainty of x in the ground state ψ0, serves as
the asymptotic proportionality constant. For U4 with D = 0.3, we find that C1 = 2.7, and
the theoretical asymptotic relation is in good agreement with the numerical findings shown in
figure 2(c).

The above result of the secular response is reminiscent of the adiabatic approximation.
Therefore, we perform an analogous analysis of the PDF.

When a similar long-period approximation is applied to equation (34), we obtain
[an(t; γ )]res � λ−1

n H(t) which, by equation (19), leads to P1(x, t) � D−1H(t)(X00−x)P0(x)

for large t. It can be verified that this P1 indeed yields the asymptotic secular linear response
mentioned above. The corresponding PDF is given by P(x, t) = P0(x) + P1(x, t) �
N exp{[H(t)X00 − U(x) − H(t)x]/D} correct to O(H). We see that this expression can
be interpreted as a simple adiabatic approximation to the secular PDF for a driving force
which varies very slowly with time, since the initial unperturbed stationary PDF is given
by P0(x) = N exp[−U(x)/D]: replacing U(x) by [U(x) + H(t)x] in P0(x) generates the
above approximate P(x, t) up to a normalization constant. We emphasize that this adiabatic
approximation is valid when [πT ∗(γ )/T ]γ � 1.
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Figure 3. The D-dependence of the ratio 2π |χ(j )|2/[A2Sxx(j )] of U4 with T = 100 for
j = 0, 1, 2.

In figure 3, we depict the D-dependence of the ratio 2π |χ(j )|2/[A2Sxx(j )] for
the potential U4 with T = 100. We only show the results for j = 0, 1 and 2 since
they are the predominant frequency components in equation (36). The above ratio can be
regarded as a measure of the output signal-to-noise ratio for each frequency component of
the secular response. We observe that its variation with D is apparently non-monotonic when
γ � 0.75.

We next examine the energetics of the system. In the time interval (t1, t2), the energy
supplied to the particle and the heat bath by the external agent that causes the temporal
fluctuations of the potential is given by [28–31]

W(t1, t2, γ ) =
∫ t2

t1

dt

∫ ∞

−∞
dx

[
∂U(x, t)

∂t

]
P(x, t) =

∫ t2

t1

[
dH(t)

dt

]
〈x(t)〉 dt. (38)

For a telegraph signal with a period 2T , it is convenient to take kT < t1 < (kT + T ), where
k is a positive integer, and t2 = (t1 + 2T ), so as to study the input energy in one period. For
linear response, 〈x(t)〉 = X00 + 
x1(t). After integrations by parts and making use of the
characteristics of a telegraph signal, we find

W(t1, t1 + 2T , γ ) = (−1)k+1(2A)[
x1(kT + 2T ) − 
x1(kT + T )].

Applying the formula of 
x1 shown in equation (30), we obtain

W(t1, t1 + 2T , γ ) = −4A2
∞∑

n=1

XonMnoλ
−1
n

[
1 + 2

k∑
j=1

(−1)j en(γ, jT )

+
(−1)k

2
en(γ, kT + 2T ) − (−1)k

3

2
en(γ, kT + T )

]
, (39)
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Figure 4. The D-dependence of (Es/A
2) for a telegraph signal of period 2T . Parts (a) and (c) are

for U4 at T = 1 and T = 100, respectively. Parts (b) and (d) are for U3 with a3 = 0.2 at T = 1
and T = 100, respectively.

which, in the large-k limit, yields the secular value of the energy input in one period of the
driving signal

Es(γ, T ) = −4A2
∞∑

n=1

XonMnoλ
−1
n


1 + 2

∞∑
j=1

(−1)j en(γ, jT )


 . (40)

For the normal diffusive system with γ = 1, the sum over j can be calculated. We obtain

Es(γ = 1, T )

A2
= 4C1 − 8

D

∞∑
n=1

X2
0n

1 + exp(λnT )
. (41)

On the other hand, for a SFFP system perturbed by a telegraph signal with a long period
[T/T ∗(γ )]γ 	 1, equation (40) yields the asymptotic expansion

Es(γ, T )

A2
� 4C1 − 8f (γ )

�(1 − γ )

C2

T γ
, (42)

where f (γ ) = ∑∞
j=1(−1)j+1j−γ is a positive numerical constant. Although equations (41)

and (42) indicate the same limiting value Es → 4A2C1 as T → ∞, the subdiffusive system
will approach this limit at a much slower rate as T increases.

In figure 4, we show the D-dependence of Es(γ, T ) for the potentials U4 and U3 with
a3 = 0.2. For given values of γ and T ,Es shows a maximum at an optimal value of D. For
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large T, the peak of Es becomes more distinct when γ is increased, whereas the introduction
of asymmetry in the confining potential significantly reduces the sharpness and the height of
the peak.

5. Response to telegraph signal with fractional duty cycle

Consider a driving signal of the following form:

H(t) = −A

∞∑
k=0

(−1)k�(t − kT )�[kT + rT − t], 0 < r < 1. (43)

The parameter r is referred to as the duty cycle [23–25, 27]. There is a time lapse of (1 − r)T

between the cessation of one pulse and the advent of the following pulse. The telegraph signal
discussed in section 4 corresponds to r = 1.

For KT < t < (KT + rT ), where K = 0, 1, 2, 3, . . . , a combination of equations (21),
(22) and (43) yields

λnan(t; γ )/A =
K−1∑
k=0

(−1)k[en(γ, t − kT ) − en(γ, t − kT − rT )]

+ (−1)K [en(γ, t − KT ) − 1]. (44)

If (K − 1 + r)T < t < KT , where K = 1, 2, 3, . . . , we have

λnan(t; γ )/A =
K−1∑
k=0

(−1)k[en(γ, t − kT ) − en(γ, t − kT − rT )]. (45)

The response 
x1(t) can be calculated according to equation (23). In figure 5, we show the
results for U4 in response to a driving signal with T = 100 and r = 0.5, for different values
of D. When [(1 − r)T /T ∗(γ )]γ 	 1, the particle has a sufficiently long time to relax in
the pulse-free time interval, and there will be negligible residual response remaining at the
beginning of the ensuing pulse. This is seen to be the case for D = 0.3 and γ = 1.

For r �= 1,H(t) has the Fourier series representation H(t) = − 4A
π

∑∞
j=0

1
2j+1

sin
(

1
2 rjT

)
cos

(
j t − 1

2 rjT
)
. By the contour integration method mentioned in the

previous section, we get [
x1(t)]osc = ∑∞
j=0 2|χ(j )| sin

(
1
2 rjT

)
cos

(
j t − 1

2 rjT −φj

)
where φj = arctan[−Re χ(j )]/[−Im χ(j )]. We again find the asymptotic relation
[
x1(t)]osc → −C1H(t) when [T/πT ∗(γ )]γ → ∞.

Taking kT < t1 < (kT + rT ), we calculate the input energy W(t1, t1 + 2T , γ ; r) in a
manner similar to that for the telegraph signal. The result is

W(t1, t1 + 2T , γ ; r)/2A2 = −
∞∑

n=1

XonMnoλ
−1
n

{
1 + (−1)k+1en(γ, kT + T )

+ 2
k∑

j=1

(−1)j en(γ, jT ) +
k∑

j=0

(−1)j [en(γ, jT + T − rT ) − en(γ, jT + rT )]

+
(−1)k

2
[en(γ, kT + 2T ) − en(γ, kT + 2T − rT )

+ en(γ, kT + T + rT ) − en(γ, kT + T )]

}
. (46)
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Figure 5. The response [
x1(t)/A] to a telegraph signal of half period T = 100 and duty cycle
r = 0.5 for the potential U4 with different values of γ : (a) D = 0.05, (b) D = 0.1, (c) D = 0.3.

In the large-k limit, we obtain the secular value

Es(γ, T ; r)

2A2
= −

∞∑
n=1

XonMnoλ
−1
n

{
1 + 2

∞∑
j=1

(−1)j en(γ, jT )

+
∞∑

j=0

(−1)j [en(γ, jT + T − rT ) − en(γ, jT + rT )]

}
. (47)

Upon setting r = 1 in equation (47), we find that Es(γ, T ; r = 1) reproduces the result
of the telegraph signal shown in equation (40). Furthermore, equation (47) leads to the
complementarity relation

Es(γ, T ; r) + Es(γ, T ; 1 − r) = Es(γ, T ; r = 1), (48)

for 0 < r < 1, as one may expect. In particular, we have 2Es(γ, T ; r = 0.5) = Es(γ, T ;
r = 1).

For γ = 1, the r-derivative of equation (47) is found to be

Er(γ = 1, T ; r) ≡ d[Es(γ = 1, T ; r)/A2]/dr

= −2T

∞∑
n=1

XonMno[e−(1−r)λnT + e−rλnT ]/(1 + e−λnT ). (49)

Several conclusions can be drawn when λ1T 	 1. We note that in the range of r that satisfies
rλ1T 	 1 and (1 − r)λ1T 	 1, the above r-derivative is exponentially small, indicating
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Figure 7. The T-dependence of Es(γ, T ; r = 0.5)/A2 for U4 at D = 0.31 with different values
of γ .

that Es has a weak dependence on r. Since the factors exp(−λnT ) in equation (49) are now
negligible, we obtain

Er(γ = 1, T ; r → 0+) � Er(γ = 1, T ; r → 1−) � 2T , (50)

where we have used equation (9). Similar analysis for the second-order r-derivative yields the
asymptotic result

Err(γ = 1, T ; r → 0+) � −Err(γ = 1, T ; r → 1−) � −2T 2

D
〈ψ0|[U ′(x)]2|ψ0〉, (51)

where we have used equation (10). Therefore, for a driving signal with a sufficiently long
period, Es(γ = 1, T ; r) rises rapidly at r = 0+ and r = 1−. For intermediate values of r, we
expect to see a plateau in the r-variation of Es . As can be shown by means of equation (47),
the value of Es is about 2A2C1 when rλ1T = O(1), whereas Es is close to 4A2C1 at r = 1.
These features are illustrated in figure 6(b).
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For γ < 1, if λ1r
γ T γ 	 1 and λ1(1 − r)γ T γ 	 1, equation (47) yields

Es(γ, T ; r)

A2
� 2C1 +

C2

�(1 − γ )T γ

{
−4f (γ ) +

∞∑
j=0

(−1)j
[

2

(j + 1 − r)γ
− 2

(j + r)γ

]}
. (52)

A comparison of equation (52) with equation (42) shows that in this range of r, Es(γ, T ;
r < 1) = 0.5Es(γ, T ; r = 1) + O(T −γ ).

Figure 7 shows the T-dependence of Es(γ, T ; r = 0.5) for U4 with D = 0.31. We see that
for a subdiffusive system with γ = 0.25, (Es/A

2) deviates noticeably from the asymptotic
limit 2C1 = 5.44 even when the period of the driving signal is as long as 2 × 106.

6. Conclusion

By the eigenfunction expansion method, we have studied the perturbing effects of periodic
rectangular pulses on one-dimensional subdiffusive fractional Fokker–Planck system with a
confining potential and initially in the stationary state. We have derived analytic expressions
for the linear response and the externally injected energy per period and performed asymptotic
analyses when the driving signal has a long period.

It is useful to compare the response to a sinusoidal driving force H(t) = −Asin ωt

with the response to a telegraph signal. For the former case [33], we obtain [
x1(t)]osc =
2|χs(ω)| sin(ωt − φ), where χs(ω) = iA

2

∑∞
n=1

X0nMn0
Yn(ω,γ )

exp[−iδn(ω, γ )] and the phase lag
is given by φ = arctan{[−Re χs(ω)]/[−Im χs(ω)]}. The wave form of the secular linear
response in this case is sinusoidal irrespective of the value of ω, although the amplitude
and the phase lag have complicated dependence on D, γ and ω. As to the input energy
in one period of oscillation (2π/ω), we obtain Es = −2πA Re[χs(ω)] which exhibits a
non-monotonic dependence on the frequency: Es ∼ ωγ when 0 < ωγ � λ1, Es ∼ ω−γ

when ω → ∞, and Es has a maximum at some intermediate optimal value of the driving
frequency [33]. In contrast, since the telegraph signal is formed by a special superposition
of sinusoidal waves with discrete characteristic frequencies, the associated Es(γ, T ; r = 1)

shows an entirely disparate dependence on the period of the signal: Es increases with increase
in T and Es = 4A2C1 −O(T −γ ) for large T. Moreover, as shown in this work, it is only when
[T/πT ∗(γ )]γ 	 1 that the temporal variation of the secular linear response of a subdiffusive
system resembles a telegraph signal. On the other hand, as far as the noise intensity dependence
is concerned, Es displays the resonance-like variation with D for both kinds of driving signals.

The results of our linear response theory of subdiffusive systems are complementary to
those of recent works [23–27] which probe the nonlinear response of diffusive systems by
simulations. The complicated nonlinear response problem of the SFFP systems deserves
further investigations.
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[35] PorráJ M 1997 Phys. Rev. E 55 6533
[36] So F and Liu K L 2002 Physica A 303 79
[37] Gorenflo R and Mainardi F 1997 Fractional calculus: integral and differential equations of fractional order

Fractals and Fractional Calculus in Continuum Mechanics ed A Carpinteri and F Mainardi (New York:
Springer) pp 223–76

[38] Achar B N N, Hanneken J W and Clarke T 2002 Physica A 309 275

http://dx.doi.org/10.1016/S0378-4371(02)02026-5
http://dx.doi.org/10.1016/j.physa.2003.09.026
http://dx.doi.org/10.1103/PhysRevE.73.020101
http://dx.doi.org/10.1103/PhysRevE.63.046118
http://dx.doi.org/10.1016/S0378-4371(99)00503-8
http://dx.doi.org/10.1103/PhysRevLett.87.118301
http://dx.doi.org/10.1063/1.1448294
http://dx.doi.org/10.1063/1.1587126
http://dx.doi.org/10.1016/j.physa.2003.12.048
http://dx.doi.org/10.1016/j.physa.2004.04.114
http://dx.doi.org/10.1126/science.1086911
http://dx.doi.org/10.1021/jp030676r
http://dx.doi.org/10.1016/S0375-9601(96)00761-X
http://dx.doi.org/10.1142/S0219477501000408
http://dx.doi.org/10.1142/S0219477502000750
http://dx.doi.org/10.1103/PhysRevE.68.061104
http://dx.doi.org/10.1103/PhysRevE.69.067101
http://dx.doi.org/10.1143/JPSJ.66.1234
http://dx.doi.org/10.1143/JPSJ.70.353
http://dx.doi.org/10.1016/S0378-4371(01)00349-1
http://dx.doi.org/10.1016/j.physa.2004.05.069
http://dx.doi.org/10.1016/j.physa.2006.01.080
http://dx.doi.org/10.1103/PhysRevA.58.3433
http://dx.doi.org/10.1103/PhysRevE.55.6533
http://dx.doi.org/10.1016/S0378-4371(01)00493-9
http://dx.doi.org/10.1016/S0378-4371(02)00609-X

	1. Introduction
	2. Basic equations and the linear response theory
	3. Response to a rectangular pulse
	4. Response to a telegraph signal
	5. Response to telegraph signal with fractional duty cycle
	6. Conclusion
	References

